LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2013

PH 1819 - ELECTRONICS AND PROGRAMMING

Date : 03/05/2013 \square
Dept. No. \square Max. : 100 Marks

Part - A
Answer ALL Questions.

1. List any four properties of an ideal operational amplifier.
2. Obtain an expression for the gain of an Op-amp based non inverting amplifier
3. List any two architectural differences between $\mu \mathrm{P} 8088$ and $\mu \mathrm{P} 8086$.
4. Develop a program segment for $\mu \mathrm{P} 8086$ to store 00 h at memory locations with offsets 100 h to 150 h with respect to ES.
5. Develop a program for $\mu \mathrm{P} 8086$ to convert a two digit unpacked BCD number in AX to packed BCD format in AL.
6. If AH contains 12 H and CL contains F 9 H , what will be the status of the conditional flags after (i) ADD AH,CL and (ii) XOR AH,CL.
7. Write a note on the $M I N / \overline{M A X}$ signal of $\mu \mathrm{P} 8086$.
8. State the differences between the LEA and LDS instructions of $\mu \mathrm{P} 8086$.
9. Write a note on the logical operators of C++.
10. Write a C++ program to input an integer and print whether it represents a leap year.

Part - B

Answer any FOUR Questions. $(4 \times 7.5=30)$
11. Sketch a neat circuit diagram of an Op-amp based 4 bits binary weighted ladder D/A converter and explain it's working in detail.
12. Illustrate with two sample instructions for each, the various addressing modes of data in μ P8086.
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to set a byte variable PN if a byte variable N represents a prime number.
14. Develop an ASM program for $\mu \mathrm{P} 8086$ to sort a byte array in ascending order.
15. Write a C++ program to print the first 100 elements of the Fibonacci series starting from 1.
Part - C

Answer any FOUR Questions.
16. Solve using Op-amps, $\frac{d^{2} v}{d t^{2}}+B \frac{d v}{d t}+c v-v_{1}(t)=0$.
17. DPX and DPY are 48 bit and 16 bit unsigned numbers respectively. Develop an ASM program for $\mu \mathrm{P} 8086$ to find the product and store the result at DPZ. DPX, DPY and DPZ are word variables.
18. Develop an ASM program for $\mu \mathrm{P} 8086$ to copy an array to an overlapping area.
19. Write a note on the DMA controller. With a neat diagram explain the events which take place during DMA transfer using BUS stealing.
(8.5+4)
20. Write a C++ program to input the elements of two $3 x 3$ integer matrices and print the product matrix

